论文部分内容阅读
地铁盾构隧道衬砌病害检测面临的最主要问题是如何获取高质量的病害图片以及如何快速、准确实现病害检测.基于CCD线阵相机设计制造了地铁隧道病害检测车,并针对上海运营地铁1、2、4、7、8、10、12等线路采集了大量的衬砌图像,通过手工标注建立高质量隧道病害样本库.基于卷积神经网络Faster R-CNN(Faster Region-based Convolutional Neural Network),构建了病害自动检测深度学习框架.考虑到裂缝及渗漏水病害的特殊性,采用数据统计分析及K-means聚类算法分析