论文部分内容阅读
针对现有电力负荷预测方法精度比较低的问题,该文提出一种改进深度神经网络的短期电力负荷预测模型。首先通过长短时记忆网络(Long Short-Term Memory,LSTM)对不同类型的日历史用电量数据进行时间序列预测,然后通过前馈神经网络(Forward Feedback Neural Network,FFNN)以及一个热编码形状表示的附加信息来提高预测性能。最后采用均方根误差(Root Mean Square Error,RMSE)评估预测模型性能。仿真结果表明,与原始LSTM模型和平均基线的短期电力负荷预测模型相比,LSTM-FFNN预测模型识别精度更高。