论文部分内容阅读
为实现乳腺癌数据规则可视化,提出一种基于Lasso和增量学习结合的、以改进的属性偏序结构图为可视化工具的乳腺癌诊断规则提取方法。采用乳腺癌数据为数据源基础上算法分为4步:首先使用Lasso方法进行特征选择实现降维,在9个特征中选出前4个关联度最大的特征;其次进行基于Gini指数的连续数据粒化,通过增量学习方式动态生成形式背景;再次融合二次Lasso筛选,将维数由17降为3;最后使用新的基于基尼指数和覆盖对象的行列优化方法生成属性偏序结构图可视化规则,提取出规则7条。将数据处理结果与主流分类器对比,结果表明