论文部分内容阅读
Tension Leg Platform(TLP) is a hybrid structure used as oil drilling and production facility within water depths of 1200 m. The extension of this TLP concept to deeper waters is a challenge and warrants for some innovative design concepts. In this paper, a relatively new concept of TLP which is christened as Tension-Based Tension Leg Platform(TBTLP) and patented by Srinivasan(1998) has been chosen for study. Response analysis of TLP with one tension base under irregular waves for three different sea states has been performed using hydrodynamic tool ANSYS? AQWA?. Results are reported in terms of RAOs, response spectrums for surge, heave and pitch degrees of freedom from which spectral statistics have been obtained. The statistics of TBTLP have been compared with TLPs(without tension base) for two different water depths to highlight the features of the new concept. The effect of viscous damping and loading effects on the RAOs are also investigated.
Tension Leg Platform (TLP) is a hybrid structure used as oil drilling and production facility within water depths of 1200 m. The extension of this TLP concept to deeper waters is a challenge and warrants for some innovative design concepts. In this paper, a new concept of TLP which is christened as Tension-Based Tension Leg Platform (TBTLP) and patented by Srinivasan (1998) has been chosen for study. Response analysis of TLP with one tension base under irregular waves for three different sea states has been done using hydrodynamic tool ANSYS® AQWA ™. Results are reported in terms of RAOs, response spectrums for surge, heave and pitch degrees of freedom from which spectral statistics have been obtained. The statistics of TBTLP have been compared with TLPs (without tension base) for two different water depths to highlight the features of the new concept. The effect of viscous damping and loading effects on the RAOs are also investigated.