论文部分内容阅读
Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.
Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done un der the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provide a new path for research of marine ecological dynamics.