论文部分内容阅读
提出了一种数据驱动的作业车间调度算法,训练样本来源于基准实例和部分实际生产数据,通过特征函数来构建样本的特征数据并进行归一化处理,标签数据由调度任务和相应的调度规则的映射关系构成,以LSTM模型为主框架,在模型中嵌入指针网络,将当前序列中概率最大的工件优先进入缓冲区,提高了神经网络的训练速度和质量,采用训练后的模型对新问题进行求解。结果证明了所构建模型的有效性,同时为求解作业车间调度问题提供了新思路。