论文部分内容阅读
To restrain the interference of co-channel users using space-time block coding (STBC), the proposed Gaussian-forcing soft decision multi-user detection (GFSDMUD) algorithm is applied in flat-fading channels by using the relation among the users’ signals, which can enhance the capacity by introducing co-channel users. During iterations, extrinsic information is calculated and exchanged between a soft multi-user detector and a bank of turbo decoders to achieve refined estimates of the users’ signals. The simulations show that the proposed iterative receiver techniques provide significant performance improvement around 2 dB over conventional noniterative methods. Furthermore, iterative multi-user space-time processing techniques offer substantial performance gains around 8 dB by adding the number of receiver antennas from 4 to 6, and the system performance can be enhanced by using this strategy in multi-user STBC systems, which is very important for enlarging the system capacity.
To restrain the interference of co-channel users using space-time block coding (STBC), the proposed Gaussian-forcing soft decision multi-user detection (GFSDMUD) algorithm is applied in flat-fading channels by using the relation among the users’ signals , which can enhance the capacity by introducing co-channel users. During iterations, extrinsic information is calculated and was exchanged between a soft multi-user detector and a bank of turbo decoders to achieve refined estimates of the users’ signals. The simulations show that the proposed iterative receiver techniques provide significant performance improvement around 2 dB over conventional non-iterative methods. Furthermore, iterative multi-user space-time processing techniques for providing substantial performance gains around 8 dB by adding the number of receiver antennas from 4 to 6, and the system performance can be enhanced by using this strategy in multi-user STBC systems, which is very important for enlarging the system capacity.