论文部分内容阅读
【摘要】现代社会所需要的人才不再是机械地运用知识,而是要学会发现、学会创造,要具有创新能力与创造性思维能力。数学素有思维的体操之称,这在培养学生思维能力方面具有得天独厚的优势。在初中数学教学中,我们要依托数学学科特点,树立新观念,践行薪方法,探索新模式,引导学生主体参与,主动思考,积极探究,以促进学生掌握基本的数学思想与方法,培养学生数学思维能力。
【关键词】初中数学 思维能力 教学策略
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2016)03-0188-02
学生思维的形成过程一般都是从形象思维发展到经验型的逻辑思维和理论型的逻辑思维,思维的不断发展与教师在教学中有意识的培养有很大的关系。因此数学教学中,除了传授数学知识和方法外,培养学生的数学思维能力是不可忽视的重要内容,我就从自己在数学教学中如何培养学生思维能力的培养,谈谈自己的一些粗浅的探讨。
一、在概念教学中培养数学思维
概念是科学认识成果的概括和总结,是以压缩形式表现大量知识的手段,是理性大量知识的一种最基本形式。正确的认识概念是一切科学思维的基础。在无理数与有理数的概念教学中,给出定义后及时揭示其本质属性,抓住“无限不循环小数”这个本质属性以区分无理数与有理数。又如假若只有具体的一个个的一元二次方程“、”等等,而没有抽象的“一元二次方程”这个概念,也就没有它的一般形式表示:,那么只好去对付一个个具体的一元二次方程的一般性研究。通过上面例子分析可以看出,数学概念教学的任务,不仅要解决“是什么”的问题,更重要的是解决“是怎样抽象的”问题,以及有了这个这个概念之后,在此基础上有如何建立和发展理论问题。即首先是对概念的来龙去脉和历史背景讲清楚,其次就是对概念的理解过程。这一过程是复杂的数学思维活动的过程,在教学中应注意激发学生的学习动机和兴趣,引导学生对概念的定义及其结构进行分析,明确概念的内涵与外延,并在此基础上启发学生归纳概括出几条基本性质的应用范围;以及利用概念进行判断等。
二、在解题中培养数学思维
解题的灵活性是指及时转向以及不过多地受思维定势的影响,善于从旧的模式或通常的制约条件中解脱出来。一般人们总喜欢局限在平面范围内考虑问题,为使学生从一开始就形成“对空间图形进行研究”,可向学生提问:你用六根等长的火柴为边,能摆出四个正三角形吗?恐怕绝大多数学生在纸上画来画去无法完成,此时可出示四面体模型,说明六根火柴可作出四个正三角形。培养数学思维的灵活性方法多种多样,传统提倡的是“一题多解”或“一解多题”是一个好办法,但是“一题 变”“一题多问”也应引起注意,如已知直线L与圆O相交于A、B,在圆O上求一点P使其到直线L的距离最近。可以引申为求与直线L平行且与圆O相切的直线与圆O的切点,或在圆O上求一点Q,使面积最小,等等。
三、在定理、法则、结论的推导过程中培养数学思维
对于定理、法则、结论等的教学,应重视其发现、推导证明的过程,使学生了解这些知识是如何发现、如何获取的。这样一方面加深了学生对知识的理解,另一方面也让学生受到思维能力的训练,使掌握数学知识与培养思维能力同步进行。例如,在讲解幂的运算性质中的“零指数幂”时,给学生观察下面一组练习题: 先让学生按除法得出结果,然按照同底数幂的运算得出结果。通过这种对比练习让学生思考“零指数幂”性质形成的过程。让学生置身于知识的形成发展过程中,注意引导学生从某些简单的问题出发,提出若干富有探索性的问题。把主动权交给学生,引导学生积極参与结论的导出过程,让他们在观察、讨论、类比、归纳中得到思维的发展。
四、培养学生良好的思维品质。
每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。例如:k是什么数时,方程kx2-(2k+1)x+k=0有两个不相等的实数根?很多同学只注意由△=[-(2k+1)]2-4k?k=4k2+4k+1-4k2=4k+1>0,推得k>-14。而如果把k>-14作为本题答案那就错了,因为当k=0时,原方程不是二次方程,所以在k>-14还得把k=0这个值排除。正确的答案应是-140时,原方程有两个不相等的实数根。在复习时要精选一些有代表性、巩固性和灵活性的习题,从各种不同角度,寻求不同的解(证)法,进行“一题多解”的训练,还可改变条件进行“一题多变”和“多题一解”的训练。这是综合运用数学知识和方法提高解题能力的重要措施。
五、调动学生内在的思维能力。
兴趣是最好的老师,也是每个学生自觉求知的内动力。教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的欲望,并使同学们认识到数学在现代化建设中的重要地位和作用。如:列方程解应用题是学生普遍感到困难的内容之一,主要困难在于掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程。因此,我在教《列代数式》时有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础上进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极地分析思维。
总之,培养学生的思维能力,就要揭示获取知识的思维过程。教学中要尊重学生的主体地位,教师不可“包办代替”,要注意留给学生足够时间和材料,启发学生积极动脑、动手、动口,进行思维操作。只有学生肯动脑筋,会动脑筋,学会如何想“数学”、“用”数学,才能使他们的思维能力得到提高。
【关键词】初中数学 思维能力 教学策略
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2016)03-0188-02
学生思维的形成过程一般都是从形象思维发展到经验型的逻辑思维和理论型的逻辑思维,思维的不断发展与教师在教学中有意识的培养有很大的关系。因此数学教学中,除了传授数学知识和方法外,培养学生的数学思维能力是不可忽视的重要内容,我就从自己在数学教学中如何培养学生思维能力的培养,谈谈自己的一些粗浅的探讨。
一、在概念教学中培养数学思维
概念是科学认识成果的概括和总结,是以压缩形式表现大量知识的手段,是理性大量知识的一种最基本形式。正确的认识概念是一切科学思维的基础。在无理数与有理数的概念教学中,给出定义后及时揭示其本质属性,抓住“无限不循环小数”这个本质属性以区分无理数与有理数。又如假若只有具体的一个个的一元二次方程“、”等等,而没有抽象的“一元二次方程”这个概念,也就没有它的一般形式表示:,那么只好去对付一个个具体的一元二次方程的一般性研究。通过上面例子分析可以看出,数学概念教学的任务,不仅要解决“是什么”的问题,更重要的是解决“是怎样抽象的”问题,以及有了这个这个概念之后,在此基础上有如何建立和发展理论问题。即首先是对概念的来龙去脉和历史背景讲清楚,其次就是对概念的理解过程。这一过程是复杂的数学思维活动的过程,在教学中应注意激发学生的学习动机和兴趣,引导学生对概念的定义及其结构进行分析,明确概念的内涵与外延,并在此基础上启发学生归纳概括出几条基本性质的应用范围;以及利用概念进行判断等。
二、在解题中培养数学思维
解题的灵活性是指及时转向以及不过多地受思维定势的影响,善于从旧的模式或通常的制约条件中解脱出来。一般人们总喜欢局限在平面范围内考虑问题,为使学生从一开始就形成“对空间图形进行研究”,可向学生提问:你用六根等长的火柴为边,能摆出四个正三角形吗?恐怕绝大多数学生在纸上画来画去无法完成,此时可出示四面体模型,说明六根火柴可作出四个正三角形。培养数学思维的灵活性方法多种多样,传统提倡的是“一题多解”或“一解多题”是一个好办法,但是“一题 变”“一题多问”也应引起注意,如已知直线L与圆O相交于A、B,在圆O上求一点P使其到直线L的距离最近。可以引申为求与直线L平行且与圆O相切的直线与圆O的切点,或在圆O上求一点Q,使面积最小,等等。
三、在定理、法则、结论的推导过程中培养数学思维
对于定理、法则、结论等的教学,应重视其发现、推导证明的过程,使学生了解这些知识是如何发现、如何获取的。这样一方面加深了学生对知识的理解,另一方面也让学生受到思维能力的训练,使掌握数学知识与培养思维能力同步进行。例如,在讲解幂的运算性质中的“零指数幂”时,给学生观察下面一组练习题: 先让学生按除法得出结果,然按照同底数幂的运算得出结果。通过这种对比练习让学生思考“零指数幂”性质形成的过程。让学生置身于知识的形成发展过程中,注意引导学生从某些简单的问题出发,提出若干富有探索性的问题。把主动权交给学生,引导学生积極参与结论的导出过程,让他们在观察、讨论、类比、归纳中得到思维的发展。
四、培养学生良好的思维品质。
每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。例如:k是什么数时,方程kx2-(2k+1)x+k=0有两个不相等的实数根?很多同学只注意由△=[-(2k+1)]2-4k?k=4k2+4k+1-4k2=4k+1>0,推得k>-14。而如果把k>-14作为本题答案那就错了,因为当k=0时,原方程不是二次方程,所以在k>-14还得把k=0这个值排除。正确的答案应是-14
五、调动学生内在的思维能力。
兴趣是最好的老师,也是每个学生自觉求知的内动力。教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的欲望,并使同学们认识到数学在现代化建设中的重要地位和作用。如:列方程解应用题是学生普遍感到困难的内容之一,主要困难在于掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程。因此,我在教《列代数式》时有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础上进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极地分析思维。
总之,培养学生的思维能力,就要揭示获取知识的思维过程。教学中要尊重学生的主体地位,教师不可“包办代替”,要注意留给学生足够时间和材料,启发学生积极动脑、动手、动口,进行思维操作。只有学生肯动脑筋,会动脑筋,学会如何想“数学”、“用”数学,才能使他们的思维能力得到提高。