论文部分内容阅读
研究了二阶哈密顿系统-ü(t)+A(t)u(t)=▽F(t,u(t))的高能量周期解的存在性问题,其中F(t,u)=F1(t,u)+F2(t,u),而F1(t,u)和F2(t,u)分别满足某种凸性及凹性条件.利用喷泉定理及其推广获得了上述哈密顿系统在F为偶泛函的条件下存在无穷多个解的结果,在一定程度上本质地推广和补充了已有的临界点理论中的某些结论.