基于模型特征匹配的BIM模型混合推荐算法

来源 :计算机与现代化 | 被引量 : 0次 | 上传用户:glacier000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了辅助地铁工程的专业设计人员从BIM模型实例库中快速获取匹配当前设计需求的参考模型,提出一种基于特征匹配的BIM模型混合推荐算法.首先基于Revit二次开发从BIM模型中获取特征数据;随后,利用模型特征参数等基本信息,采用熵权灰色关联模型计算模型实例的推荐度;然后,结合用户交互数据,采用梯度提升决策树算法(GBDT)与逻辑回归(LR)算法的融合模型计算模型实例的推荐度;最后,根据训练数据集的规模动态调整2种推荐度的组合比例.实验表明,该方法不仅避免了系统冷启动问题,并且在足够的用户交互数据支持下有更好的BIM模型推荐质量.
其他文献
针对传统定密方式定密不严谨、定密尺度难以把握、经验难以积累等问题,提出基于改进的TextRank算法的计算机辅助定密方法,该方法通过定密规则的词性特点,将句向量分解为名词向量和非名词向量,构造基于词性的句向量,利用改进的TextRank算法对文档语句排序,获取在定密细则影响下的关键语句权重,计算文档密级分数,判断文档密级.实验结果表明,该方法比目前传统定密方式准确率有所提高.
为准确有效识别出农作物病虫害类别及位置,构建一款农作物病虫害图像识别App系统,为广大农户、研究人员及管理者提供智能信息服务.该系统基于Android平台开发,在所收集的大量病虫害数据集上,开展了Darknet、YOLO等深度网络模型训练和测试,并使用批量正则化、维度聚类和课程设计学习等技术优化模型,实现了181种作物病虫害图像的在线识别检测,为复杂环节下农作物病害及虫害在线识别、监管防控、综合治理等提供技术依据.