论文部分内容阅读
摘 要:研究了非线性边界条件下高维空间上具有时变系数和吸收项的多孔介质抛物系统解的爆破问题。 通过构造能量表达式,运用Sobolev不等式和其他微分不等式技巧,得到了该问题解的全局存在性以及爆破发生时解的爆破时间下界估计。
关键词:爆破;多孔介质抛物系统;全局存在性;时变系数;吸收项
中图分类号:O175.29
文献标志码:A
最近几十年来,有关抛物方程和抛物系统解的爆破问题受到学者们广泛关注。 爆破问题的研究主要涉及解的全局存在、爆破时间的上界和下界、爆破率等,依赖于方程和系统的线性或非线性、空间维数、初始数据以及边界条件。文献[1-4]考虑了三维空间上齐次边界条件(Dirichlet条件和Neumann条件)和Robin边界条件下解的全局存在和爆破问题。文献[5-14]研究了高维空间上非线性边界条件下解的全局存在和爆破问题。文献[15-17]考虑了时变或空变系数的局部和非局部抛物方程和抛物系统解的爆破。文献[18-22]研究了其他偏微分方程解的爆破。从某种意义上,非局部的偏微分方程比局部的偏微分方程更有实际应用价值,因而探讨非局部的抛物方程和抛物系统解的爆破有更强的理论价值和实际意义。然而,对于非局部的数学模型的研究目前存在不少困难,因为局部的数学模型的理论和方法不适用于非局部的情况。关于爆破发生时解的爆破时间界的估计,研究上界的方法较多,而下界较少。
参考文献:
[1]PAYNE L E, SCHAEFER P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. Journal of Mathematical Analysis and Applications, 2007, 328(2): 1196-1205.
[2]LIU Y. Blow up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition[J]. Computers and Mathematical with Applications, 2013, 66(10): 2092-2095.
[3]李远飞. Robin边界条件下更一般化的非线性抛物问题全局解的存在性和爆破[J]. 应用数学学报, 2018, 41(2): 257-267.
[4]李远飞. 一类系数依赖于时间的抛物系统解的全局存在性和爆破現象[J]. 数学的实践与认识, 2019, 49(4): 193-200.
[5]LIU Z Q, FANG Z B. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux[J]. Discrete and Continuous Dynamical Systems-Series B, 2016, 21(10): 3619-3635.
[6]SHEN X H, DING J T. Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions[J]. Computers and Mathematics with Applications, 2019, 77(12): 3250-3263.
[7]BAGHAEI K, HESAARAKI M. Blow-up for a system of semilinear parabolic equation with nonlinear boundary conditions[J]. Mathematical Methods in the Applied Sciences, 2015, 38(3): 527-536.
[8]LIU Y. Lower bounds for the blow-up time in a nnonlocal reaction diffusion problem under nonlinear boundary conditions[J]. Mathematical and Computer Modeling, 2013, 57(3/4): 926–931.
[9]LIU Y, LUO S G, YE Y H. Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions[J]. Computers and Mathematical with Applications, 2013, 65(8): 1194-1199.
[10]CHEN W H, LIU Y. Lower bound for the blow up time for some nonlinear parabolic equations[J]. Boundary Value Problems, 2016, 2016: 1-6.
[11]TANG G S. Blow-up phenomena for a parabolic system with gradient nonlinearity under nonlinear boundary conditions[J]. Computers and Mathematics with Applications, 2017, 74(3): 360-368. [12]郑亚东,方钟波. 一类具有时变系数梯度源项的弱耦合反应-扩散方程组解的爆破分析[J]. 数学物理学报, 2020, 40(3): 735-755.
[13]李远飞. 非线性边界条件下高维抛物方程解的全局存在性及爆破现象[J]. 应用数学学报, 2019, 42(6): 721-735.
[14]PAYNE L E, PHILIPPIN G A, VERNIER PIRO S. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, Ⅱ[J]. Nonlinear Analysis: Theory, Methods and Applications, 2010, 73(4): 971-978.
[15]XIAO S P, FANG Z B. Blow-up phenomena for a porous medium equation with time-dependent coefficients and inner absorption term under nonlinear boundary flux[J]. Taiwanese Journal of Mathematics, 2018, 22(2): 349-369.
[16]DING J T, SHEN X H. Blow-up analysis in quasilinear reaction-diffusion problems with weighed nonlocal source[J]. Computers and Mathematics with Applications, 2017, 75(4): 1288-1301.
[17]張环,方钟波.一类具有空变系数的非线性反应-扩散方程组解的爆破时间下界[J].中国海洋大学(自然科学版), 2019, 49(增刊I): 181-186.
[18]曹春玲,李行, 李雨桐, 等. 一类具超临界源的非线性黏弹性双曲方程解的爆破时间下界估计[J]. 吉林大学学报(理学版), 2019, 57(2): 324-326.
[19]王雪, 郭悦, 祖阁. 一类具超临界源非线性双曲方程解的爆破时间下界估计[J]. 吉林大学学报(理学版), 2019, 57(3): 567-570.
[20]CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete and Continuous Dynamical Systems, 2020, 40(9): 5513-5540.
[21]CHEN W H. Dissipative structure and diffusion phenomena for doubly dissipative elastic waves in two Space dimensions[J]. Journal of Mathematical Analysis and Applications, 2020, 486 (2): 123922-123936.
[22]CHEN W H. Cauchy problem for thermoelastic plate equations with different damping mechanisms[J]. Communications in Mathematical Sciences, 2020, 18(2): 429-457.
[23]BREZIS H. Functional analysis, sobolev spaces and partial differential equations[M]. New York: Springer, 2011.
(责任编辑:周晓南)
Abstract:
Blow-up of solutions to a porous medium parabolic system with time-dependent coefficients and inner absorption terms under nonlinear boundary conditions in high dimension is studied. By formulating energy expressions and using methods of Sobolev inequalities and other differential inequalities, the global existence and lower bound estimate of blow up time for the solutions to the problem are obtained.
Key words:
blow-up; porous medium parabolic system; global existence; time-dependent coefficient; absorption term
关键词:爆破;多孔介质抛物系统;全局存在性;时变系数;吸收项
中图分类号:O175.29
文献标志码:A
最近几十年来,有关抛物方程和抛物系统解的爆破问题受到学者们广泛关注。 爆破问题的研究主要涉及解的全局存在、爆破时间的上界和下界、爆破率等,依赖于方程和系统的线性或非线性、空间维数、初始数据以及边界条件。文献[1-4]考虑了三维空间上齐次边界条件(Dirichlet条件和Neumann条件)和Robin边界条件下解的全局存在和爆破问题。文献[5-14]研究了高维空间上非线性边界条件下解的全局存在和爆破问题。文献[15-17]考虑了时变或空变系数的局部和非局部抛物方程和抛物系统解的爆破。文献[18-22]研究了其他偏微分方程解的爆破。从某种意义上,非局部的偏微分方程比局部的偏微分方程更有实际应用价值,因而探讨非局部的抛物方程和抛物系统解的爆破有更强的理论价值和实际意义。然而,对于非局部的数学模型的研究目前存在不少困难,因为局部的数学模型的理论和方法不适用于非局部的情况。关于爆破发生时解的爆破时间界的估计,研究上界的方法较多,而下界较少。
参考文献:
[1]PAYNE L E, SCHAEFER P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. Journal of Mathematical Analysis and Applications, 2007, 328(2): 1196-1205.
[2]LIU Y. Blow up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition[J]. Computers and Mathematical with Applications, 2013, 66(10): 2092-2095.
[3]李远飞. Robin边界条件下更一般化的非线性抛物问题全局解的存在性和爆破[J]. 应用数学学报, 2018, 41(2): 257-267.
[4]李远飞. 一类系数依赖于时间的抛物系统解的全局存在性和爆破現象[J]. 数学的实践与认识, 2019, 49(4): 193-200.
[5]LIU Z Q, FANG Z B. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux[J]. Discrete and Continuous Dynamical Systems-Series B, 2016, 21(10): 3619-3635.
[6]SHEN X H, DING J T. Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions[J]. Computers and Mathematics with Applications, 2019, 77(12): 3250-3263.
[7]BAGHAEI K, HESAARAKI M. Blow-up for a system of semilinear parabolic equation with nonlinear boundary conditions[J]. Mathematical Methods in the Applied Sciences, 2015, 38(3): 527-536.
[8]LIU Y. Lower bounds for the blow-up time in a nnonlocal reaction diffusion problem under nonlinear boundary conditions[J]. Mathematical and Computer Modeling, 2013, 57(3/4): 926–931.
[9]LIU Y, LUO S G, YE Y H. Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions[J]. Computers and Mathematical with Applications, 2013, 65(8): 1194-1199.
[10]CHEN W H, LIU Y. Lower bound for the blow up time for some nonlinear parabolic equations[J]. Boundary Value Problems, 2016, 2016: 1-6.
[11]TANG G S. Blow-up phenomena for a parabolic system with gradient nonlinearity under nonlinear boundary conditions[J]. Computers and Mathematics with Applications, 2017, 74(3): 360-368. [12]郑亚东,方钟波. 一类具有时变系数梯度源项的弱耦合反应-扩散方程组解的爆破分析[J]. 数学物理学报, 2020, 40(3): 735-755.
[13]李远飞. 非线性边界条件下高维抛物方程解的全局存在性及爆破现象[J]. 应用数学学报, 2019, 42(6): 721-735.
[14]PAYNE L E, PHILIPPIN G A, VERNIER PIRO S. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, Ⅱ[J]. Nonlinear Analysis: Theory, Methods and Applications, 2010, 73(4): 971-978.
[15]XIAO S P, FANG Z B. Blow-up phenomena for a porous medium equation with time-dependent coefficients and inner absorption term under nonlinear boundary flux[J]. Taiwanese Journal of Mathematics, 2018, 22(2): 349-369.
[16]DING J T, SHEN X H. Blow-up analysis in quasilinear reaction-diffusion problems with weighed nonlocal source[J]. Computers and Mathematics with Applications, 2017, 75(4): 1288-1301.
[17]張环,方钟波.一类具有空变系数的非线性反应-扩散方程组解的爆破时间下界[J].中国海洋大学(自然科学版), 2019, 49(增刊I): 181-186.
[18]曹春玲,李行, 李雨桐, 等. 一类具超临界源的非线性黏弹性双曲方程解的爆破时间下界估计[J]. 吉林大学学报(理学版), 2019, 57(2): 324-326.
[19]王雪, 郭悦, 祖阁. 一类具超临界源非线性双曲方程解的爆破时间下界估计[J]. 吉林大学学报(理学版), 2019, 57(3): 567-570.
[20]CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete and Continuous Dynamical Systems, 2020, 40(9): 5513-5540.
[21]CHEN W H. Dissipative structure and diffusion phenomena for doubly dissipative elastic waves in two Space dimensions[J]. Journal of Mathematical Analysis and Applications, 2020, 486 (2): 123922-123936.
[22]CHEN W H. Cauchy problem for thermoelastic plate equations with different damping mechanisms[J]. Communications in Mathematical Sciences, 2020, 18(2): 429-457.
[23]BREZIS H. Functional analysis, sobolev spaces and partial differential equations[M]. New York: Springer, 2011.
(责任编辑:周晓南)
Abstract:
Blow-up of solutions to a porous medium parabolic system with time-dependent coefficients and inner absorption terms under nonlinear boundary conditions in high dimension is studied. By formulating energy expressions and using methods of Sobolev inequalities and other differential inequalities, the global existence and lower bound estimate of blow up time for the solutions to the problem are obtained.
Key words:
blow-up; porous medium parabolic system; global existence; time-dependent coefficient; absorption term