论文部分内容阅读
针对人工蜂群算法收敛速度慢、寻优精度低的缺点,提出基于狭义中心和随机维度学习的人工蜂群算法。首先,在算法中定义狭义中心蜜蜂,并与当前种群最优解进行贪婪选择为种群最优解;其次,用最优解引导算法进行搜索,以增强算法局部搜索能力;再次,在每次迭代时,蜜蜂随机选择若干维度数进行学习,以加速算法收敛。8个经典基准函数的测试结果表明,新算法在收敛速度和解的精度上优于类似改进算法。