论文部分内容阅读
为研制出满足惯性约束聚变(ICF)实验的氘氚(DT)冷冻靶,需要控制DT结晶生长过程,实现DT单晶生长,由此减少影响冰层均匀化及聚变实验的晶体缺陷.本文运用晶体生长形态动力学理论建立了密排六方晶体(hcp)单晶生长模型,实验中通过对靶室进行±3 m K精确控温,采用可见光背光成像技术在线表征了低温下玻璃微球内氘(D2)的结晶生长过程,结果表明:在20—100 Pa低温氦气导热环境下,通过缓慢降温可显著降低氘晶体生长过程中形成的缺陷;当降温速率达到2 m K/min时,观测到了氘燃料的两种单晶生长过程,实验具有可重复性;建立的hcp单晶生长理论模型与实验结果符合,并与美国利弗莫尔国家实验室(LLNL)的DT单晶生长过程进行了对比,提出了冷冻靶内D2/DT燃料的单晶生长方法.
In order to develop a deuterium-tritium (DT) cryo-target that satisfies the inertial confinement fusion (ICF) experiment, it is necessary to control the growth of the DT crystal to achieve the DT single crystal growth, thereby reducing the crystal defects that affect the homogenization and fusion experiments of the ice layer.In this paper, Crystal growth morphology kinetic theory established a close-packed hexagonal crystal (hcp) single crystal growth model, the experiment by accurate target chamber temperature ± 3 m K, visible light backlit imaging technology online characterization of low temperature deuterium glass microspheres (D2). The results show that the defects formed during the growth of deuterium crystals can be significantly reduced by slow cooling in the low temperature helium atmosphere of 20-100 Pa. When the cooling rate reaches 2 m K / min, The dendritic fuel single crystal growth process, the experiment has reproducibility; hcp single crystal growth model established in line with the experimental results, and with the United States Livermore National Laboratory (LLNL) DT single crystal growth process In contrast, a single crystal growth method of cryogenic target D2 / DT fuel has been proposed.