论文部分内容阅读
为了提高网络流量预测精度,针对最小二乘支持向量机LSSVM(Least Squares Support Vector Machine)参数优化问题,提出一种改进人工蜂群ABC(artificial bee colony)算法优化LSSVM的网络流量预测模型(ABC-LSSVM)。该模型根据混沌理论对网络流量时间序列进行重构,然后将网络流量预测精度作为优化目标,通过ABC算法找到最优的LSSVM参数,并建立网络流量预测模型,最后采用仿真对比实验测试模型的性能。仿真结果表明,相对于参比模型,ABC-LS