论文部分内容阅读
考虑到传统Web文档聚类算法聚类效果差、速度慢等问题,针对Web文档聚类算法进行深入研究,使用目标优化策略将Web文档聚类认为是最佳划归文档集合的范畴,并通过引入优化算法进行聚类划分。针对使用SVD表示的Web文档向量存在高维稀疏性等问题,使用LDA对Web文档簇的潜在语义子空间进行重构,从而降低Web文档向量空间的维数,最后在低维空间使用遗传算法进行寻优。常规的GA算法通常存在算法早熟以及局部寻优能力弱等问题。故提出一种改进型GA算法,通过引入自适应对偶种群、自适应终止规则以及新的生成子代规则来保