论文部分内容阅读
关联规则挖掘是数据挖掘领域中的重要研究内容之一。由于数据挖掘的过程是动态交互的,因此对已经发现的关联规则进行维护更新显得非常重要。提出了一种实用的在支持度和置信度不变的情况下数据集规模减小的负增量关联规则维护算法。算法在如何减少数据集的扫描次数,如何充分利用现有的信息减少候选集的规模等方面进行了研究,给出了算法的具体实现。理论分析和实验结果表明算法是有效的。