论文部分内容阅读
对临床检验指标时间序列进行聚类,从中发现临床检验指标变化趋势相似的患者群体,对开展精准医疗具有非常重要的价值。考虑到不同患者的检验次数及检验时间点不完全同步,首先通过对非同步时间序列进行预处理,实现不同时间序列维度及时间点的同步化。在此基础上,通过引入一个用户自定义参数即噪声点占有率NoisePro,对DBScan算法进行改进,提出了一种基于密度划分思想的非同步临床检验指标时间序列聚类LabTS-CLU算法。最后利用某三甲医院十余万糖尿病患者近10年的糖化血红蛋白时间序列数据集进行实验,结果证明了所提算法