论文部分内容阅读
为解决果园需水量预测精度低、鲁棒性差等问题,提出了遗传算法(GA)优化BP神经网络的果园需水量预测模型.选取空气温度、土壤含水率、光照强度3个主要环境因子作为BP神经网络的输入量,利用遗传算法的全局搜索能力优化神经网络权值和阈值,建立GA-BP神经网络模型预测果园需水量.仿真结果表明:GA-BP预测模型的预测值比BP模型更加趋近期望需水量,模型评价指标平均绝对百分比误差(MAPE)、均方根误差(RMSE)和平均绝对误差(MAE),均优于单一BP神经网络模型.与传统的BP神经网络算法相比,GA-BP神经网络