论文部分内容阅读
Petrological and geochemical studies of deep-derived enclaves from the Liuhe-Xiangduo area, eastern Tibet, showed that the enclaves involve five types of rocks, i.e., garnet diopsidite, garnet amphibolite, garnet hornblendite, amphibolite and hornblendite, whose main mineral assemblages are Grt+Di+Hbl, Grt+Pl+Hbl+Di, Grt+Hbl+Pl, Pl+Hbl, and Hbl+Bt, respectively. The enclaves exhibit typical crystalloblastic texture, and growth zones are well developed in garnet (Grt) in the enclaves. In view of major element geochemistry, the deep|derived enclaves are characterized by high MgO and FeO+*, ranging from {12.00%} to {12.30%} and {8.15%} to {10.94%}, respectively. The protolith restoration of metamorphic rocks revealed that the enclaves belong to ortho-metamorphic rocks. The REE abundances vary over a wide range, and ∑REE ranges from {53.39} to {129.04} μg/g. The REE patterns slightly incline toward the HREE side with weak LREE enrichment. The contents of Rb, Sr, and Ba range from {8.34} to 101μg/g, 165 to 1485 μg/g, and 105 to 721 μg/g, respectively. The primitive mantle-normalized spider diagrams of trace elements show obvious negative Nb, Ta, Zr and Hf anomalies. Sr-Nd isotopic compositions of the enclaves indicated that the potential source of deep-derived enclaves is similar to the depleted|mantle, and their {({}+{87}Sr/+{86}Sr)-i} ratios vary from {0.706314} to {0.707198}, {({}+{147}Nd/+{144}Nd)-i} ratios from {0.512947} to {0.513046}, and {ε-{Nd}(T)} values from {+7.0} to {+9.0}, respectively. The potential source of the enclaves is obviously different from the EM2-type mantle from which high-K igneous rocks stemmed (the host rocks), i.e., there is no direct genetic relationship between the enclaves and the host rocks. Deep-derived enclaves in the host rocks belong to mafic xenoliths, and those in the Liuhe-Xiangduo area, eastern Tibet, are some middle-lower crust ortho-metamorphic rocks which were accidentally captured at 20-50 km level by rapidly entrained high-temperature high-K magma, whose source is considered to be located at 50-km depth or so.