论文部分内容阅读
基于Siamese网络的视觉跟踪算法是近年来视觉跟踪领域的一类重要方法,其在跟踪速度和精度上都具有良好的性能。但是大多数基于Siamese网络的跟踪算法依赖离线训练模型,缺乏对跟踪器的在线更新。针对这一问题,本文提出了一种基于在线学习的Siamese网络视觉跟踪算法。该算法采用双模板思想,将第一帧中的目标当作静态模板,在后续帧中使用高置信度更新策略获取动态模板;在线跟踪时,利用快速变换学习模型从双模板中学习目标的表观变化,同时根据当前帧的颜色直方图特征计算出搜索区域的目标似然概率图,与深度特征融合,