论文部分内容阅读
讨论了一类三阶微分方程奇摄动边值问题.根据奇摄动理论得知问题的解在左边界点邻近具有非一致性.为构造一致有效的渐近解,利用多重尺度法,引进一个适当的快变量,把原来单个自变量的常微分方程转化为两个尺度变量的偏微分方程,再将解按两尺度变量展开成幂级数形式,并将这个幂级数展开式代人原问题的方程中,合并同量级的系数并令其为零,再利用原问题的边界条件和关于小参数的渐近展开原理及消去长期项的办法,可依次决定各待定量,从而克服了原问题解的展开式的非一致收敛性.最后得到了关于原三阶微分方程边值问题的一阶小量的一致有效的浙近