论文部分内容阅读
多标签图像标注在根据模型预测的概率,利用排名函数进行标注时会出现多标或少标的问题,提出了融合阈值寻优的卷积神经网络(CNN-THOP)模型,该模型由卷积神经网络(CNN)和阈值寻优构成。首先,通过CNN训练模型,利用该模型对图片进行预测,得到预测概率,其中在CNN中增加了批标准化层(BN)有效地加快了收敛。其次,利用该模型对测试集图片的预测概率进行阈值寻优,经过阈值寻优过程为每类标签得到一个最佳阈值,从而得到一组最佳阈值,只有当该类标签的预测概率大于等于该类标签的最佳阈值时,才会给图片标注该标签。在