论文部分内容阅读
在服装图像分类和检索问题上,由于服装花纹样式的多样性和图像中不同环境背景的影响,普通卷积神经网络的辨识能力有限。针对这种情况,提出一种基于度量学习的卷积神经网络方法,其中度量学习基于triplet loss实现,由此该网络有参考样本、正样本和负样本共三个输入。通过度量学习可以减小同类别特征间距,增大不同类别特征间距,从而达到细分类的目的。此外把不同背景环境下的图像作为正样本输入训练网络以提高抗干扰能力。在服装检索问题上,提出融合卷积层特征和全连接层特征的精细检索方法。实验结果表明,度量学习的引入可以