基于四分之一波片的菲佐型同步移相干涉测量方法

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:jusso
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了实现干涉测量平面的抗振,提出了一种同步移相干涉测量方案并搭建了实验装置。整个测量系统在菲佐移相干涉仪的基础上,利用四分之一波片作为参考镜,获得一对正交偏振光,经过棋盘相位光栅分光,利用光阑选取对于理想光栅衍射效率一致的(±1,±1)级衍射光作为测量分光路,使之先后通过相位延迟阵列和偏振片获得4幅移相量依次为π/2的干涉图。按照传统的4步移相算法,对被测波面进行了复原。分析了光强畸变和移相误差对系统测量误差的影响。与泰曼型同步移相干涉测量相比,该方案可以简化系统结构,减小系统误差,并且更易装校,更适合用于平面的测量。
其他文献
研究了以掠入射的平面偏振光激励的多孔硅的光致发光。实验结果显示,光的入射角对多孔硅的发光行为影响不大,然而,以z方向偏振光激励的发光强度明显高于以x方向偏振光激励的发光强度。激励光电场相对于样品表面的不同取向引起光致发光的差异,这反映多孔硅的光学性质是各向异性的,也排除了纯粹的硅量子点的集合作为多孔硅结构的可能性。
Based on the modified ramp and fire technique, a novel injection seeding approach with real-time resonance tracking is successfully demonstrated in a single-frequency Nd:YAG pulsed laser. Appling a high-frequency sinusoidal modulation voltage to one piezo
设计并制作了输出功率为196 mW的级联式全光纤1020 nm光源。该光源采用光纤拉曼放大器与掺镱光纤放大器级联的放大方案,实现了对低功率1020 nm种子光的放大。在光纤拉曼放大级,采用了3段不同长度的拉曼增益光纤进行了对比实验,比较了一定信号光功率和抽运光功率下拉曼增益光纤长度对光纤拉曼放大级输出功率的影响;测量了拉曼增益光纤长度为3150 m时光纤拉曼放大级输出光的光谱特性。研究了掺镱光纤放大级输出光的光谱特性和功率特性。实验得到的1020 nm光源为研究1064 nm光纤激光器同带抽运特性提供了抽
针对表面涂有150 μm厚环氧基底漆涂层的2024铝合金,采用不同脉冲频率的纳秒脉冲激光进行激光清洗试验,分析了激光清洗后试样的表面形貌、表面粗糙度、清洗厚度以及清洗机理等。试验结果表明:表面粗糙度(Ra)受频率的影响较小且在3 μm左右。计算了不同脉冲频率下的清洗深度,结果发现,当频率为10 kHz时,清洗深度约为130 μm。通过数值模拟分别研究了激光清洗过程中脉冲频率对烧蚀机制中烧蚀量和剥离机制中热应力的影响。数值模拟结果表明:烧蚀量随着频率的增大而降低,在5~2
我们已经报导过用激光研究发动机内气流流动和燃烧过程所得的结果。现在要讨论的是风洞测量。研究风洞的首要目的是要研制出流体情况良好的汽车车身。因为汽车的空气阻力越小,它的燃料用量就越小。早在1966年,大众汽车就采用一种大风洞,但是不久发现有时不得不借助于其他风洞。为此设计了另一种较小的风洞(现在已付诸实用)。这里可以对模型(比例可达1:2.5)进行气体动力学测量。此外还可将它用作气候风洞,用以研究交通工具的温升情况、冷却器和其他部件。可以模拟空气湿度以及太阳辐射。此外,这里还有一个转动试验台(最大速度达22
期刊
The Einstein–Podolsky–Rosen (EPR) paradox is one of the milestones in quantum foundations, arising from the lack of a local realistic description of quantum mechanics. The EPR paradox has stimulated an important concept of “quantum nonlocality,” which man
期刊
An all-digital design method consisting of a laser drive circuit for gradually modulating the frequency, pulse width, and amplitude of the output of semiconductor laser is demonstrated. Field programmable gate arrays (FPGAs) and accurate delaying chip are