【摘 要】
:
Currently,pyrolysis as the most widely used method still has some key issues not well resolved for syn-thesis of carbon-supported single-atom catalysts(C-SACs),
【机 构】
:
State Key Laboratory of Fine Chemicals,Department of Chemistry,School of Chemical Engineering,Dalian
论文部分内容阅读
Currently,pyrolysis as the most widely used method still has some key issues not well resolved for syn-thesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high tem-perature as well as the high cost and complicated preparations of precursors.In this report,molten salts are demonstrated to be marvellous medium for preparation of C-SACs by pyrolysis of small molecular precursors(ionic liquid).The ultrastrong polarity on one hand establishes robust interaction with precur-sor and enables better carbonization,resulting in largely enhanced yield.On the other hand,the aggre-gation of metal atoms is effectively refrained while no nanoparticle or cluster is formed.By this strategy,a C-SAC with atomically dispersed Fe-N4 sites and a high specific area over 2000 m2 g-1 is obtained,which illustrates high ORR activity in both acid and alkaline media.Moreover,this SAC exhibits superior methanol tolerance and stability after acid soaking at 85 ℃ for 48 h.It is believed that the molten-salts-assisted pyrolysis can be developed into a routine strategy as it not only can largely simply the synthesis of C-SACs,but also can be extended to prepare other types of SACs.
其他文献
Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-potential cathodes failing to apply in fu
Defect-induced charge carrier recombination at the interfaces between perovskite and adjacent charge transport layers restricts further improvements in the devi
Improving the OER activity of noble metal-based materials is of profound importance to minimize the usage of noble metals and lower the cost.Here,we report cons
采用醇胺法的脱碳系统用于脱除天然气中高含的CO2,系统运行中发现溶液受到明显污染,热稳定盐含量增加、金属离子超标、设备存在一定程度的腐蚀现象。采用合适的阴离子树脂对胺液进行离子交换测试,确定了热稳定盐吸附、再生的最佳工艺条件,即吸附时间为60 min,流量为2 m3/h,再生液采用5%的NaOH溶液。胺液净化后,热稳定盐脱除率达78%,胺液颜色明显改善,同时胺液中铬离子含量也有一定程度的降低。
Porous active core-shell carbon material with excellent synergistic effect has been regarded as a prospective material for supercapacitors.Herein,we report an i
Li-S batteries have been considered as one of advanced next-generation energy storage systems owing to their remarkable theoretical capacity(1672 mAh g-1)and hi
Vanadium redox flow battery (VRFB) is one of the most promising large-scale energy storage systems,which ranges from kilowatt to megawatt.Nevertheless,poor elec
Supported Pd catalysts with varied Pd loadings (x =0.5 wt%,2.0 wt%,5.0 wt%,7.5 wt%,15.0 wt%) were prepared by the incipient wetness impregnation method using a ZnAl2
Finding easy-to-operate strategy to obtain anode material with well-designed structure and excellent electrochemical performance is necessary to promote the dev
The development of promising zinc anodes mainly suffers from their low plating/stripping coulombic efficiencies when using aqueous electrolyte,which are mainly