论文部分内容阅读
为解决由肺部CT图像对肺结节进行良恶性分类的问题,提出了一个新颖的端到端深度学习网络DenseNet-centercrop。通过在原有的DenseNet结构中的稠密块间增加新的分支,引入了中心剪裁操作。该网络结构具有2个优势:(1)不仅最大程度保留了DenseNet的结构,而且将其稠密连接机制扩展到了稠密块水平,大大丰富了肺结节的多尺度特征。(2)参数量较少,是一种轻量化的网络结构。将基于该网络的肺结节良恶性分类方法在LIDC-IDRI数据集上进行评估,实验结果表明,DenseNet-centerc