论文部分内容阅读
毫米波引信通过发射宽带信号获得目标的精细结构信息,然而在非合作目标的探测与识别过程中,由于缺乏目标的类别信息,大量的目标样本无法得到充分的利用。针对这一问题,将基于拉普拉斯得分(LS)的监督特征选择算法推广到半监督情况,得到基于标签重构的拉普拉斯得分算法(LRLS),并应用到非合作目标的识别中。LRLS的理论框架与LS相同,并利用标签重构技术获得半监督情况下的图拉普拉斯矩阵。为了更好地描述高维目标样本的相似性,在标签重构的过程中使用测地距离代替欧氏距离。实验结果表明,相对于传统的特征选择算法,LRLS能够