论文部分内容阅读
改进的局部切空间排列(ILTSA)算法解决了当样本稀疏、分布不均匀或数据流密度曲率变化较大时,局部切空间排列算法不能揭示流形结构的问题,用于人脸识别能提取更好的低维特征,但不能有效处理不断增加的数据集的问题。为此,提出一种可泛化的ILTSA(GILTSA)算法。结合类别信息定义样本间的距离实现各样本的近邻集选择,基于ILTSA算法求解训练样本集的低维流形,对每个新样本寻找其在训练样本集中的最近邻,然后根据ILTSA算法原理求得其近似低维流形。在ORL、Yale和埃塞克斯大学人脸库上的实验结果表明,与