论文部分内容阅读
Dry separation of iron mineral from low-grade coal-series kaolin in Hubei Province of China was investigated. The structure and chemical composition of the kaolin ore were determined by X-ray diffraction (XRD) and X-ray Fluorescence (XRF) analyses. The narrow particle size range classiifcation, dry magnetic separation and calcination were carried out to evaluate the particle size distribution, and the relation between the content of iron and the whiteness. Experimental results revealed that the highest content of iron (3.70%) in kaolin ore was in the particle size range from 60 to 74 μm, and pyrite was the main occurrence of iron in the kaolin ore. Dry magnetic separation showed that the removal rate of iron in kaolin ore could be increased obviously after calcination, and the rate of iron removal was 60% in the particle size range from 60 to 74 μm. As pyrite can be transformed into hematite through calcination, thermodynamic studies and XRD analysis showed that the maximum content of hematite was obtained at 900℃, which would be more beneifcial to magnetic separation.