论文部分内容阅读
目的 探讨个体辐射敏感性对GPA基因突变频率的影响及其校正方法。方法 利用彗星实验、CB微核 +3AB指数实验和多元线性回归统计分析方法 ,检测个体辐射敏感性及其对X射线工作者GPA基因突变频率剂量 效应曲线的影响 ,建立多元线性回归方程。结果 X射线工作者的辐射敏感性存在个体差异 ,个体辐射敏感性是GPA基因突变频率变异的影响因素 ;个体的辐射敏感性较高者 ,GPA基因突变频率较高 ;经个体辐射敏感性校正后GPA基因突变频率与剂量的相关性加强 ,GPAN基因突变频率的多元线性回归曲线方程 :YN=2 4 7× 10 - 6 +0 5× 10 - 6 X1 - 99 5× 10 - 6X2 +1 7× 10 - 6 X3,总相关系数r=0 6 73(P <0 0 1)。结论 用个体辐射敏感性指标校正个体差异 ,改善了GPA基因突变频率剂量 效应关系 ;多元回归方程估算的累积剂量更接近估算的物理剂量 ;减少了GPA基因突变频率估算累积剂量和预测癌患风险的不确定度。
Objective To investigate the influence of individual radiosensitivity on the mutation frequency of GPA gene and its correction method. Methods The comet assay, CB micronucleus +3 AB index experiment and multiple linear regression analysis were used to detect the individual radiation sensitivity and its effects on the dose-response curve of GPA gene mutations in X-ray workers. Multiple linear regression equations were established. Results There were individual differences in the radiosensitivity of X-ray workers. The individual radiosensitivity was the influencing factor of the mutation frequency of GPA gene. Individuals with higher radiosensitivity had higher frequency of GPA mutation. After individual radiosensitivity correction The frequency of GPA gene mutation correlated with the dose, and the multiple linear regression equation of GPAN gene mutation frequency was: YN = 2 4 7 × 10 - 6 +0 5 × 10 - 6 X1 - 99 5 × 10 - 6X2 +1 7 × 10 - 6 × 3, and the total correlation coefficient r = 0 6 73 (P <0 0 1). Conclusion The individual differences of individual sensitivity to radiation can be used to correct the individual differences and improve the dose-response relationship of GPA mutation frequency. The cumulative dose estimated by multivariate regression equation is closer to the estimated physical dose, and the frequency of GPA mutation is reduced to estimate the cumulative dose and predict the risk of cancer uncertainty.