论文部分内容阅读
在高炉生产中,准确的预测高炉煤气流分布状况将有助于保证高炉的稳定顺行.针对传统高炉煤气流预测模型的缺陷,本文提出了一种将带遗传因子的自回归移动平均模型(FF-ARMAX)和基于限定记忆的正则化极限学习机(RFMLS-RELM)相结合的高炉煤气流多步预测模型.在数据预处理方面,建立FF-ARMAX模型消除原始数据中的测量误差,同时采用傅里叶变换法消除数据中叠加的环境噪声.最后采用RFMLS-RELM算法进行多步预测,对比试验表明,该算法在应用于煤气流预测时,预测精度更高,适用于对煤气流分布状况的多步预