论文部分内容阅读
在建立决策树分类模型时,剪枝的方法直接影响分类器的分类效果。通过研究基于误差率的剪枝算法,引入条件误差的概念,改进剪枝标准的评估方法,针对决策树的模型进行优化,提出条件误差剪枝方法,并将其应用于C4.5算法中。实验结果表明,条件误差剪枝方法有效地解决剪枝不充分和过剪枝的情况,在一定程度上提高了准确率。