多判别器协同框架:高品质图像的谱归一生成对抗网络

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:zwfyazl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通过生成对抗网络的对抗学习生成仿真图像,已成为人工智能领域的一个研究热点.为了进一步提高生成图像的质量,本文提出了多判别器协同合作的网络框架——采用多个判别器为唯一生成器提供联合损失量,并通过不同的学习率保持各个判别器的差异性.同时,为了满足判别器的Lipschitz连续条件,本文所有的判别器网络一律进行谱归一化操作.实验表明,本文提出的基于多判别器合作框架的生成对抗网络表现较优.
其他文献
绝缘子图像中存在的噪声对提取绝缘子细节纹理特征具有较大影响,单个特征描述子不能描述绝缘子的更多细节纹理特征,而提取到绝缘子细节纹理特征的多少直接影响了绝缘子缺陷检测的精度和速度.针对以上问题,提出改进快速导向滤波算法和融合PHOG与BOW-SURF特征来实现绝缘子缺陷的精确检测.首先,采用改进的快速导向滤波算法对接触网绝缘子原始图像进行滤波;然后,提取绝缘子滤波后图像的PHOG和BOW-SURF特
在拥有海量数据和强大计算能力的人工智能时代,音频场景分类成为了场景理解的重要研究内容之一.针对音频场景分类建模困难和精确率不高的问题,本文提出一种基于卷积神经网络
为了提高二维复杂场景下多人姿态估计准确度和速度,提出了一种Mobile-YOLOv3模型与多尺度特征融合全卷积网络相结合的自顶向下多人姿态估计方法.利用深度可分离卷积改进YOLOv3网络以作为高效的人体目标检测器.针对网络特征下采样过程中上层高分辨率信息不断遗失问题,在经典U型网络结构中嵌入多尺度特征融合模块,从而使网络中的低尺度特征也包含高分辨率信息,并在特征融合模块中引入通道注意力机制,进一步