论文部分内容阅读
如何从动态数据中挖掘关联规则是目前知识发现中的一个研究热点。Can树是基于CATS树改进后提出的解决关联规则增量挖掘的一种有效算法,它要求事务中的每个项按照某种特定顺序进行排序后再构建Can树,其顺序一般采用字典序、字母序等。然而,Can树所使用的排序方法有可能使得Can树的规模过大,从而使得算法效率较低。针对该问题,在现有Can树挖掘算法的基础上,使用数据量排序替代现有排序方法,提出了一种基于数据量排序的Can树,并基于新的Can树对原有Can树的建树和挖掘方法进行优化。该方法可以有效减小Can树