核小体定位预测的集成学习方法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:donny0325
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
核小体定位指DNA双螺旋相对于组蛋白的位置,并在DNA的转录阶段起着重要的调节作用.依靠生物实验的手段测得核小体定位会消耗大量的时间和资源,因此基于计算方法利用DNA序列进行核小体定位预测成为了一个重要的研究方向.针对核小体定位预测中单一模型和单一编码在DNA序列特征表示和学习方面的不足,文中提出了一种端到端的集成深度学习模型FuseENup,利用3种编码方式从多个维度表示DNA数据,利用不同的模型从不同维度提取数据中隐含的关键特征,构造了一种全新的DNA序列表征模型.在4种数据集上进行20倍交叉验证,相比当前针对核小体定位预测问题综合性能最优的模型CORENup,FuseENup的准确度(Accuracy)和精度(Precision)在HS数据集上提高了3%和9%,在DM数据集上提高了2%和6%,在E数据集上提高了1%和4%,相比其他的机器学习和深度学习基准模型,FuseENup具有更好的性能.实验结果表明,FuseENup能提高核小体定位的预测准确度,说明了该方法的有效性和科学性.
其他文献
随着大数据时代的到来,各个行业领域需要处理的数据之间的关系数量呈几何级数增长,亟需一种支持海量复杂数据关系表示能力的数据模型,即领域知识图谱.虽然领域知识图谱展现了巨大的潜力,但不难发现目前仍然缺乏成熟的构建技术和平台.如何快速构建出领域知识图谱是一个重要挑战.在对领域知识图谱进行系统的研究后,提出了一种基于属性图模型的领域知识图谱构建方法.该方法对于存储在多种原始业务数据库中的结构化、半结构化数据,通过约定图数据库的数据对接协议、多种图实体模式和关系模式配置方案等方式,完成对应的高质量完整的图谱模式构建