论文部分内容阅读
鉴于传统尺度不变特征变换(scale invariant feature transform,SIFT)算法特征描述子维度过高、匹配时间长和误匹配率较高的问题,提出一种改进SIFT的图像特征匹配算法.首先,将SIFT特征点邻域的方形区域改为十字形分区来简化特征描述子,降低描述子的维度,减少匹配计算量;然后,在由欧式距离获取初始匹配点对的基础上,结合余弦相似度约束条件过滤伪匹配;最后,利用渐进一致采样(progress sample consensus,PROSAC)算法进一步优化匹配结果,实现精准匹配.实验结果表明,该算法在模糊、光照、仿射、尺度旋转等变化条件下均显著提高了正确匹配率,并缩短了匹配耗时,有效提升了在复杂场景下的匹配性能.