论文部分内容阅读
由于神经网络的非线性映射、自适应及自学习的能力已越来越多地用于结构损伤识别中,本文根据网络参数选择的原则建立了一个三层BP神经网络结构损伤识别模型,对一简支钢板进行了分析。为避免单一频率或模态振型作为输入向量带来的误差,选用与损伤位置和程度相关的组合参数:即结构损伤前后的频率变化平方和少点模态振型作为输入参数。利用训练好后的网络对损伤模型进行诊断和预测,取得了较好的效果。