基于上下文环境和句法分析的蛋白质关系抽取

来源 :计算机应用 | 被引量 : 7次 | 上传用户:zhongqiangcumt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对蛋白质交互作用关系(PPI)抽取方法中特征利用的片面性问题,提出了一种从上下文环境和句法结构中抽取特征的方法。该方法抽取词法特征、位置特征、距离特征、依存句法特征和深层句法特征等丰富特征构成特征集,并且使用支持向量机(SVM)分类器进行PPI抽取。方法在5个公开的PPI语料上进行了评估。实验结果表明,丰富特征有效地利用了更为全面的信息,避免丢失重要特征的危险,得到了较好的PPI抽取性能。即在AImed语料上的实验取得了59.2%的F值和85.6%的曲线下面积(AUC)值。
其他文献
2011版《数学课程标准》沿袭了新课改的教育理念,强调学生的主体地位,要引导学生去自主探索,合作互助,它像一颗北斗七星为一线教育者指明了前进方向。但在教育实践中,课程实
针对串行情况下光子映射算法速度慢的问题,对光子映射算法并行化进行可行性分析,充分利用图像处理器(GPU)的统一设备计算架构(CUDA)的并行和计算能力,实现光子映射算法的并行化。同时针对算法中光子发射追踪阶段生成GPU线程数与光子数相同的方法的不足以及平均分配方法所造成的资源浪费等,提出线程之间协同工作的方法并采用动态平衡处理,使光子渲染速度提升了将近一倍。实验结果证明了多线程间协同工作及动态平衡