【摘 要】
:
提出了由金属-有机骨架材料(MOF)衍生的菱形十二面体NiO-NiCo2O4空心多面体结构包覆还原氧化石墨烯(rGO)作为硫载体的设计方案,极性金属氧化物可以有效吸附多硫化物,抑制穿梭效应,空心结构可以有效缓解电极反应过程中的体积变化,rGO的引入可有效提高电极材料的电导率,促进正极硫的充分反应,进而提高硫的利用率,提高电极材料的电化学性能.在0.5 C电流密度下,S/NiO-NiCo2O4-rGO复合材料循环100次后放电比容量为591 mAh/g,在1 C电流密度下,S/NiO-NiCo2O4-rGO
【机 构】
:
贵州梅岭电源有限公司特种化学电源国家重点实验室,贵州遵义563000;航天江南集团有限公司,贵州贵阳550009;贵州梅岭电源有限公司特种化学电源国家重点实验室,贵州遵义563000
论文部分内容阅读
提出了由金属-有机骨架材料(MOF)衍生的菱形十二面体NiO-NiCo2O4空心多面体结构包覆还原氧化石墨烯(rGO)作为硫载体的设计方案,极性金属氧化物可以有效吸附多硫化物,抑制穿梭效应,空心结构可以有效缓解电极反应过程中的体积变化,rGO的引入可有效提高电极材料的电导率,促进正极硫的充分反应,进而提高硫的利用率,提高电极材料的电化学性能.在0.5 C电流密度下,S/NiO-NiCo2O4-rGO复合材料循环100次后放电比容量为591 mAh/g,在1 C电流密度下,S/NiO-NiCo2O4-rGO复合材料循环300次后放电比容量为365 mAh/g,较S/C电极有较大提升,同时该材料还具有优异的倍率性能.
其他文献
隔膜作为锂离子电池的重要组成部件之一,其安全性对锂离子电池的安全性有着至关重要的作用.主要从基膜和涂层两个方面阐述了近年来高安全性隔膜的研究进展,指出各种技术方向的优缺点.对高安全性隔膜的发展进行了总结和展望,通过不断优化工艺、降低成本,提升高熔点基膜的应用价值,通过耐高温和具有关断功能的有机涂层提高隔膜的安全性,高熔点基膜、有机涂层与无机涂层的复合是高安全性隔膜的主要发展方向.
随着锂离子电池的商业化发展,电池本身的安全问题越来越受到社会各界关注,最直接的就是电池起火甚至爆炸.对于锂离子电池燃烧爆炸产物毒性的研究是非常重要的.归纳总结了锂离子电池各组成部分的燃烧产物,并对比分析了七氟丙烷、全氟己酮、二氧化碳、水和干粉灭火剂的灭火产物,有助于明确燃烧与灭火过程中有毒物质的生成机理,并指导事故发生后的应急与防护工作.
士兵系统在未来战争中具有重要作用,保障其信息化装备持续供电问题日益受到各国重视.对世界主要国家士兵系统电源保障技术进行了分析,总结了各国在储能电池、供电系统模式和发电技术等方面的研究和应用现状,进而从作战样式、用电需求、电池技术、系统架构等方面,分析了士兵系统电源保障面临的诸多挑战.从实战运用角度,提出未来士兵系统电源应重点发展燃料电池、新能源发电和无线供电技术.
飞轮储能系统作为当前最受关注的储能系统之一,在轨道交通领域的优势较为显著.基于轨道交通领域中最为典型的城市轨道(地铁)及高铁系统,分析了飞轮储能技术的研究应用现状及发展趋势.介绍了飞轮储能的技术原理及其特点,基于两种典型轨道交通系统,梳理了飞轮储能技术的应用现状;分析并展望了飞轮储能技术在轨道交通领域的发展趋势,为行业研究或工程应用提供借鉴.
理论比能量高达2600 Wh/kg的锂硫电池已经成为锂电池研究热点,然而硫导电性不好、穿梭效应和锂化体积效应较大等问题阻碍了锂硫电池的产业化.将无定型多孔碳材料的高导电性和极性MoS2的固硫作用相结合改善锂硫电池的电化学性能.所得的S@MoS2/C在0.05 C和2 C电流密度下的放电比容量分别为1507和406.3 mAh/g,比S@MoS2在相同电流密度下的放电比容量(1400和345.7 mAh/g)更高.在循环性能测试中,S@MoS2/C容量保持率为46.9%,要高于S@MoS2(39.1%).因
以间苯二酚、甲醛、氧化石墨烯和三聚氰胺为原料,通过溶胶-凝胶法制备氮掺杂炭气凝胶,再对其进行CO2活化.用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、X射线光电子光谱法(XPS)和N2吸附等进行物理性能分析,用交流阻抗谱、恒流充放电测试等进行电化学性能测试.随着活化温度的提高,材料表面形成了密集的具有大量孔的内部相互交联的网络结构.当活化温度为900℃时,所制备的样品比表面积最高,由NCAG-4的1194 m2/g增大到CO2-900-NCAG-4的1849 m2/g.在经过活化以后,CO2-
采用大气等离子喷涂在粒子完全熔化条件下制备的Sr掺杂LaMnO3(LSM)阴极由于三相反应界面和贯通孔隙数量不足,其阴极阻抗较大.针对这一问题,通过在LSM微粉中加入20%(体积分数)亚微米石墨经团聚造粒获得LSM/石墨复合粉末,采用大气等离子喷涂在不同功率下制备了LSM阴极,采用扫描电子显微镜法(SEM)、能量散射光谱(EDS)及X射线衍射光谱法(XRD)表征了阴极的组织结构和相结构,研究了电弧功率对LSM阴极结构与性能的影响.大气等离子喷涂制备的阴极在经过800℃热处理去除石墨后呈现稳定的钙钛矿结构,
超临界CO2辅助制备了1-丁基-3-甲基咪唑三氟甲磺酸盐([BMIm][TfO])离子液体填充海泡石纳米棒的一维离子凝胶(IL@SNR),其与Nafion溶液共混后浇铸制得适应低湿度环境用复合质子交换膜.结果表明:加入适量IL@SNR的复合膜表面平整,力学性能、吸水性和质子传导性均得到提升;当IL@SNR含量为2%(质量分数)时,复合膜断裂强度、吸水率和80℃、80%相对湿度条件下质子传导率分别比同等条件下Nafion 212膜高出89.8%、73.2%和91.6%,基于该复合膜的单电池65℃下功率密度峰
高温聚合物电解质膜燃料电池(HT-PEMFC)使用富氢重整气代替纯氢进料时,其中高浓度CO(可达3×10-2)会导致电极毒化,使电池性能降低.采用Pt/C和PtRu/C催化剂制备多层结构阳极,研究了不同阳极结构在重整气进料时对电池性能的影响,优化得到最佳阳极结构(内侧Pt/C、外侧PtRu/C复合阳极).与传统Pt/C阳极相比,采用3×10-2 CO/H2进料,在160℃、0.5 A/cm2下,单体电池电压提高了48.2%(160 mV),并对该多层复合电极耐毒化机制进行了探讨.
研究了LiCoO2正极和氧化亚硅/石墨复合负极(LiCoO2-SiO/石墨)软包锂离子电池体系(LIBs)循环衰减机理,通过循环过程中电化学阻抗(EIS)、增量容量分析(ICA)、正负极形貌等分析了循环的影响因素.结果表明,硅基负极材料在完全嵌锂状态下的体积膨胀不仅会导致SiO负极的颗粒破碎,与电解液的副反应加剧,其膨胀应力还会造成电极的导电网络和粘结剂网络的破损,从而导致正负极活性物质利用率降低,降低SiO负极材料的循环性能.此外,SiO负极的充放电电压平台较高,与石墨材料复合使用时,容易造成电池正极的