论文部分内容阅读
This paper describes the development of a model for unbounded heterogeneous domains with radiation damping produced by an unphysical wave absorbing layer. The Perfectly Matched Layer(PML) approach is used along with a displacement-based finite element. The heterogeneous model is validated using the closed-form solution of a benchmark problem: a free rod with two-part modulus subjected to a specified time history. Both elastically supported and unsupported semi-infinite rods with different degrees of inhomogeneity and loading are considered. Numerical results illustrate the effects of inhomogeneity on the response and are compared with those for equivalent homogeneous domains. The effects of characteristic features of the inhomogeneous problem, presence of local maxima and cut-off frequency are determined. A degenerate case of a homogeneous semi-infinite rod on elastic foundations is produced by tending the magnitude of the foundation stiffness to zero. The response of the latter is compared with that of a free rod. The importance of proper selection of the PML parameters to highly accurate and efficient results is demonstrated by example problems.
This paper describes the development of a model for unbounded heterogeneous domains with radiation damping produced by an unphysical wave absorbing layer. The Perfectly Matched Layer (PML) approach is used along with a displacement-based finite element. The heterogeneous model is validated using the closed -form solution of a benchmark problem: a free rod with two-part modulus by to a specified time history. Both elastically supported and unsupported semi-infinite rods with different degrees of inhomogeneity and loading are considered. Numerical results illustrate the effects of inhomogeneity on the response and are compared with those for equivalent homogeneous domains. The effects of characteristic features of the inhomogeneous problem, presence of local maxima and cut-off frequency are determined. A degenerate case of a homogeneous semi-infinite rod on elastic foundations is produced by tending the magnitude of the foundation stiffness to zero. The response of the latter is com pared with that of a free rod. The importance of proper selection of the PML parameters to highly accurate and efficient results is demonstrated by example problems.