论文部分内容阅读
基于纹理图像的特征,提出了基于灰度共生矩阵(GLCM)和快速极大似然估计(EM)算法相结合的纹理图像分割新算法,为了获得较好的纹理图像分割结果该算法采用灰度共生矩阵的三个常用特征并在四个方向上求平均,从而克服了方向的影响。采用欧式距离度量函数求得两特征向量的距离。通过用改进EM算法对距离矩阵进行聚类,得到纹理图像的初始分割结果,最后用形态学的方法实现对纹理图像边界的精确定位。