论文部分内容阅读
摘要 通过设计连接权的更新律,研究时滞递归神经网络的[H∞]稳定性问题,建立基于线性矩阵不等式的[H∞]稳定性判据。所设计的连接权更新律可以减少时滞递归神经网络模型中参数不确定性的影响,进而增强系统的鲁棒性。将所提方法应用到时滞递归神经网络的[H∞]同步控制问题,并建立相关的同步判据。最后,通过算例说明所提方法的有效性。
关 键 词 神经网络;[H∞]性能;稳定性;同步控制
中图分类号 TP183 文献标志码 A
Abstract This paper investigates the[H∞]stability problem of delayed recurrent neural networks by designing the update laws of connection weights, and the[H∞]stability criterion is established in terms of linear matrix inequality. The proposed update laws of connection weights reduce the influence of parameter uncertainties in the delayed recurrent neural network model which results in the increase of the robustness of system. The proposed method is applied to[H∞]synchronization control of delayed recurrent neural networks, and a synchronization criterion is developed accordingly. Finally, the number examples are provided to illustrate the effectiveness of the proposed method.
Key words recurrent neural networks;[H∞]performance; stability; synchronization control
0 引言
神經网络是研究人工智能的重要方法,也是实现智能控制的重要工具[1]。自1982年美国科学院院士Hopfield提出Hopfield递归神经网络以来,对该模型的相关研究始终是一个热点话题。目前,该神经网络已经广泛应用于优化计算、图像处理与模式识别等领域。稳定是神经网络得以应用的前提,有着重要的研究意义。因此,关于Hopfield递归神经网络的稳定性分析得到学者的广泛关注[2-8]。
随着研究的不断深入,Hopfield递归神经网络模型已经得到演化。特别是,学者考虑了神经网络实现过程中存在的时滞问题[3-8]。一般来说,时滞是导致网络不稳定或者系统性能恶化的主要源头之一。因此,对神经网络中不同种类的时滞稳定性分析受到学者的青睐。另一方面,干扰无处不在,一个系统的[H∞]性能反映了其自身的抗干扰能力。因此,神经网络的[H∞]稳定性研究有着重要的意义。如文献[9]考虑了切换神经网络的[H∞]稳定性问题;文献[10-12]分别分析了时滞神经网络的[H∞]状态估计问题;通过设计自适应控制器,文献[13-14]探究了时滞忆阻递归神经网络同步控制问题。
纵观神经网络的[H∞]性能分析问题,现有文献大多是通过设计状态反馈控制器来实现系统的[H∞]指标[10-14],而忽略了连接权的更新能力。进而,如何结合神经网络连接权的更新能力来探究其[H∞]性能问题,是一个值得深入思考的话题。基于此原因,本文主要针对Hopfield时滞递归神经网络,通过设计连接权矩阵的更新律来使系统达到[H∞]稳定。同时,主从同步控制考虑的是两个系统的跟踪问题,主要是通过对从系统施加控制,使其与主系统完全同步。本文将关于[H∞]稳定的结果应用于神经网络的同步控制问题。
1 模型描述
考虑以下时滞递归神经网络模型
2 主要结果
本节将针对时滞递归神经网络式(1),设计一种连接权更新律,建立一个新的LMI [H∞]稳定性判据,并将所得结果推广到时滞神经网络的[H∞]同步控制问题。
2.1 [H∞]稳定判据
5 结论
针对带有参数扰动和干扰输入的时滞递归神经网络,本文设计了连接权的参数更新律,并建立使得神经元满足[H∞]性能指标的LMI稳定性判据。该判据可以借助Matlab线性矩阵不等式工具包直接验证并计算连接权更新律的增益。与已有的文献相比,本文所提出的分析方法,体现了连接权自身的学习能力。同时,本文将所得稳定性结果应用于时滞递归神经网络[H∞]同步控制问题,建立了实现同步的充分判据,给出了控制增益的求解方法。算例仿真说明了本文方法的有效性。本文的结果可以应用于模式识别、图像处理和安全通讯等领域。
参考文献:
[1] ZHANG H G,WANG Z S,LIU D R. A comprehensive review of stability analysis of continuous-time recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2014,25(7):1229-1262.
[2] NISHIYAMA K,SUZUKI K. Hinfinity-learning of layered neural networks[J]. IEEE Transactions on Neural Networks,2001,12(6):1265-1277. [3] FAYDASICOK O. New criteria for global stability of neutral-type Cohen-Grossberg neural networks with multiple delays[J]. Neural Networks,2020,125:330-337.
[4] ARIK S. A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays[J]. Journal of the Franklin Institute,2019,356(1):276-291.
[5] LI Z C,YAN H C,ZHANG H,et al. Stability analysis for delayed neural networks via improved auxiliary polynomial-based functions[J]. IEEE Transactions on Neural Networks and Learning Systems,2019,30(8):2562-2568.
[6] PARK J H. Robust stability of bidirectional associative memory neural networks with time delays[J]. Physics Letters A,2006,349(6):494-499.
[7] 胡進,宋乾坤. 基于忆阻的时滞神经网络的全局稳定性[J]. 应用数学和力学,2013,34(7):724-735.
[8] DING S B,WANG Z S,WU Y M,et al. Stability criterion for delayed neural networks via Wirtinger-based multiple integral inequality[J]. Neurocomputing,2016,214:53-60.
[9] AHN C K. An [H∞] approach to stability analysis of switched Hopfield neural networks with time-delay[J]. Nonlinear Dynamics,2010,60(4):703-711.
[10] DING S B,WANG Z S,WANG J D,et al. [H∞] state estimation for memristive neural networks with time-varying delays:The discrete-time case[J]. Neural Networks,2016,84:47-56.
[11] LIN W J,HE Y,ZHANG C K,et al. Stochastic finite-time [H∞] state estimation for discrete-time semi-Markovian jump neural networks with time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(12):5456-5467.
[12] RAKKIYAPPAN R,MAHESWARI K,VELMURUGAN G,et al. Event-triggered [H∞] state estimation for semi-Markov jumping discrete-time neural networks with quantization[J]. Neural Networks,2018,105:236-248.
[13] WANG J L,QIN Z,WU H N,et al. Finite-time synchronization and [H∞] synchronization of multiweighted complex networks with adaptive state couplings[J]. IEEE Transactions on Cybernetics,2020,50(2):600-612.
[14] WU H Q,ZHANG X W,LI R X,et al. Adaptive anti-synchronization and [H∞] anti-synchronization for memristive neural networks with mixed time delays and reaction-diffusion terms[J]. Neurocomputing,2015,168:726-740.
[15] DING S B,WANG Z S. Event-triggered synchronization of discrete-time neural networks:a switching approach[J]. Neural Networks,2020,125:31-40.
关 键 词 神经网络;[H∞]性能;稳定性;同步控制
中图分类号 TP183 文献标志码 A
Abstract This paper investigates the[H∞]stability problem of delayed recurrent neural networks by designing the update laws of connection weights, and the[H∞]stability criterion is established in terms of linear matrix inequality. The proposed update laws of connection weights reduce the influence of parameter uncertainties in the delayed recurrent neural network model which results in the increase of the robustness of system. The proposed method is applied to[H∞]synchronization control of delayed recurrent neural networks, and a synchronization criterion is developed accordingly. Finally, the number examples are provided to illustrate the effectiveness of the proposed method.
Key words recurrent neural networks;[H∞]performance; stability; synchronization control
0 引言
神經网络是研究人工智能的重要方法,也是实现智能控制的重要工具[1]。自1982年美国科学院院士Hopfield提出Hopfield递归神经网络以来,对该模型的相关研究始终是一个热点话题。目前,该神经网络已经广泛应用于优化计算、图像处理与模式识别等领域。稳定是神经网络得以应用的前提,有着重要的研究意义。因此,关于Hopfield递归神经网络的稳定性分析得到学者的广泛关注[2-8]。
随着研究的不断深入,Hopfield递归神经网络模型已经得到演化。特别是,学者考虑了神经网络实现过程中存在的时滞问题[3-8]。一般来说,时滞是导致网络不稳定或者系统性能恶化的主要源头之一。因此,对神经网络中不同种类的时滞稳定性分析受到学者的青睐。另一方面,干扰无处不在,一个系统的[H∞]性能反映了其自身的抗干扰能力。因此,神经网络的[H∞]稳定性研究有着重要的意义。如文献[9]考虑了切换神经网络的[H∞]稳定性问题;文献[10-12]分别分析了时滞神经网络的[H∞]状态估计问题;通过设计自适应控制器,文献[13-14]探究了时滞忆阻递归神经网络同步控制问题。
纵观神经网络的[H∞]性能分析问题,现有文献大多是通过设计状态反馈控制器来实现系统的[H∞]指标[10-14],而忽略了连接权的更新能力。进而,如何结合神经网络连接权的更新能力来探究其[H∞]性能问题,是一个值得深入思考的话题。基于此原因,本文主要针对Hopfield时滞递归神经网络,通过设计连接权矩阵的更新律来使系统达到[H∞]稳定。同时,主从同步控制考虑的是两个系统的跟踪问题,主要是通过对从系统施加控制,使其与主系统完全同步。本文将关于[H∞]稳定的结果应用于神经网络的同步控制问题。
1 模型描述
考虑以下时滞递归神经网络模型
2 主要结果
本节将针对时滞递归神经网络式(1),设计一种连接权更新律,建立一个新的LMI [H∞]稳定性判据,并将所得结果推广到时滞神经网络的[H∞]同步控制问题。
2.1 [H∞]稳定判据
5 结论
针对带有参数扰动和干扰输入的时滞递归神经网络,本文设计了连接权的参数更新律,并建立使得神经元满足[H∞]性能指标的LMI稳定性判据。该判据可以借助Matlab线性矩阵不等式工具包直接验证并计算连接权更新律的增益。与已有的文献相比,本文所提出的分析方法,体现了连接权自身的学习能力。同时,本文将所得稳定性结果应用于时滞递归神经网络[H∞]同步控制问题,建立了实现同步的充分判据,给出了控制增益的求解方法。算例仿真说明了本文方法的有效性。本文的结果可以应用于模式识别、图像处理和安全通讯等领域。
参考文献:
[1] ZHANG H G,WANG Z S,LIU D R. A comprehensive review of stability analysis of continuous-time recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2014,25(7):1229-1262.
[2] NISHIYAMA K,SUZUKI K. Hinfinity-learning of layered neural networks[J]. IEEE Transactions on Neural Networks,2001,12(6):1265-1277. [3] FAYDASICOK O. New criteria for global stability of neutral-type Cohen-Grossberg neural networks with multiple delays[J]. Neural Networks,2020,125:330-337.
[4] ARIK S. A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays[J]. Journal of the Franklin Institute,2019,356(1):276-291.
[5] LI Z C,YAN H C,ZHANG H,et al. Stability analysis for delayed neural networks via improved auxiliary polynomial-based functions[J]. IEEE Transactions on Neural Networks and Learning Systems,2019,30(8):2562-2568.
[6] PARK J H. Robust stability of bidirectional associative memory neural networks with time delays[J]. Physics Letters A,2006,349(6):494-499.
[7] 胡進,宋乾坤. 基于忆阻的时滞神经网络的全局稳定性[J]. 应用数学和力学,2013,34(7):724-735.
[8] DING S B,WANG Z S,WU Y M,et al. Stability criterion for delayed neural networks via Wirtinger-based multiple integral inequality[J]. Neurocomputing,2016,214:53-60.
[9] AHN C K. An [H∞] approach to stability analysis of switched Hopfield neural networks with time-delay[J]. Nonlinear Dynamics,2010,60(4):703-711.
[10] DING S B,WANG Z S,WANG J D,et al. [H∞] state estimation for memristive neural networks with time-varying delays:The discrete-time case[J]. Neural Networks,2016,84:47-56.
[11] LIN W J,HE Y,ZHANG C K,et al. Stochastic finite-time [H∞] state estimation for discrete-time semi-Markovian jump neural networks with time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(12):5456-5467.
[12] RAKKIYAPPAN R,MAHESWARI K,VELMURUGAN G,et al. Event-triggered [H∞] state estimation for semi-Markov jumping discrete-time neural networks with quantization[J]. Neural Networks,2018,105:236-248.
[13] WANG J L,QIN Z,WU H N,et al. Finite-time synchronization and [H∞] synchronization of multiweighted complex networks with adaptive state couplings[J]. IEEE Transactions on Cybernetics,2020,50(2):600-612.
[14] WU H Q,ZHANG X W,LI R X,et al. Adaptive anti-synchronization and [H∞] anti-synchronization for memristive neural networks with mixed time delays and reaction-diffusion terms[J]. Neurocomputing,2015,168:726-740.
[15] DING S B,WANG Z S. Event-triggered synchronization of discrete-time neural networks:a switching approach[J]. Neural Networks,2020,125:31-40.