论文部分内容阅读
传统的矩阵分解法只能简单提取低阶信息,特征组合单一,无法挖掘更多隐含信息。依赖稀疏的评分表已经无法满足个性化推荐。MovieLens数据集是研究推荐系统的经典数据集。通过改进神经协同过滤模型,使用多个嵌入层对MovieLens数据集所有信息进行嵌入分析,充分挖掘隐含信息,使得推荐算法更有实用意义。通过在MovieLens-100k和MovieLens-1m上设置多组对照实验表明,该改进模型不仅学习了更多信息,而且与神经协同过滤模型相比,其错误率显著减小。