论文部分内容阅读
稀疏编码在编码过程中忽略特征之间的局部关系,使编码不稳定,并且优化问题中的减法运算可能会导致特征之间相互抵消.针对上述2个问题,文中提出融合局部性和非负性的Laplacian稀疏编码的图像分类方法.引入局部特征附近的基约束编码,利用非负矩阵分解将非负性加到Laplacian稀疏编码中,利用空间金字塔划分和最大值融合表示最终的图像,并采用多类线性SVM分类图像.本文方法保留特征之间的局部信息,避免特征之间相互抵消,保留更多的特征,从而改善编码的不稳定性.在4个公共数据集上的实验表明,相比其它现有算法,