论文部分内容阅读
基于文献[1]给出了一种数值证明变分不等式解的存在性方法。通过Hilbert空间中的Riesz表示定理,首先将变分不等式问题的迭代过程转化为一种不动点形式,再利用Schauder不动点定理构造了一个高效率的数值证明过程.即通过数值计算产生一个包含近似解的有界闭凸子集。非线性Helmholtz方程的算例说明这一方法的可行性和高效性。