论文部分内容阅读
针对支持向量机SMO训练算法在遇到大规模问题时训练过慢的问题,提出了一种改进的工作集选择模型的并行算法。在该算法中,根据支持向量机训练过程中的特点,提出了限定工作集选择次数、工作集选择的过程中跳过稳定样本的策略。对该SMO算法进行并行训练,3组著名数据集的实验结果表明,该模型在保持精度的情况下,进一步提高了训练的速度。