论文部分内容阅读
提出了一种基于模板匹配和神经网络相结合的车牌字符识别算法.采用二维经验模式分解算法(BEMD)对图像进行去噪处理,用Sobel算子进行边缘检测,使用累计直方图和低分辨率图进行特征提取,利用模板匹配法对车牌进行粗识别,对于模板匹配不可识别或难于识别的字符改用BP神经网络进一步识别.实验结果表明,车牌的识别率和识别速度都有所提高.