论文部分内容阅读
提出一种基于引导图像和自适应支持域的局部立体匹配算法。首先对校正后的输入图像进行预处理得到引导图像;在匹配代价计算阶段,提出一种梯度计算方法,结合引导图像和输入图像的梯度信息,分别计算x和y方向的梯度,再与AD(absolute difference)和Census变换融合构建匹配代价计算函数;在代价聚合阶段,使用基于自适应支持域的导向滤波;在视差细化阶段,提出一套基于自适应支持域的多步细化方法,通过该方法得到最终的视差图。实验结果表明,视差细化后全部区域的平均误差和方均根误差平均减少43.7%和3