论文部分内容阅读
可变Caldero’n-Zygmund核分数次积分算子是一种特殊的分数次积分算子,而分数次积分算子是调和分析的重要算子,它不仅在调和分析中有着重要的地位而且在偏微分方程中也具有及其重要的作用,所以有必要研究可变Caldero’n-Zygmund核分数次积分算子的一些性质.文章改进了文[5]的结论,运用经典调和分析的理论和方法进一步讨论了可变Caldero’n-Zygmund核分数次积分算子TΩ,μ在Herz型Hardy空间上的连续性,得到如下结论:当Ω(x,z)∈L^∞(R^n)×L^s(S^s