论文部分内容阅读
为实现参考作物蒸散量(Reference Crop Evapotranspiration,ET0)的准确计算和预测,利用广义回归神经网络(Generalized Regression Neural Network,GRNN)进行非线性映射,为减少人为因素影响采用粒子群算法(Particle Swarm Optimization,PSO)自动寻找神经网络最优参数,建立了基于粒子群算法和广义回归神经网络的参考作物蒸散量预测模型(PSO-GRNN)。研究气象数据缺失情况下模型模拟效果,在缺失风速和日照时数情况下